Solvent states and spectroscopy of doped helium clusters as a quantum-chemistry-like problem.

نویسندگان

  • Néstor F Aguirre
  • Pablo Villarreal
  • Gerardo Delgado-Barrio
  • Alexander O Mitrushchenkov
  • María Pilar de Lara-Castells
چکیده

The Full-Configuration-Interaction Nuclear-Orbital (FCI-NO) approach [J. Chem. Phys., 2009, 131, 19401], as the implementation of the quantum-chemistry ansatz, is overviewed and applied to (He)N-Cl2(X) clusters (N≤ 4). The ground and excited states of both fermionic (3)He and bosonic (4)He [see also, J. Phys. Chem. Lett., 2012, 2, 2145] clusters are studied. It is shown that the FCI-NO approach allows us to overcome three main difficulties: (1) the Fermi-Dirac (Bose-Einstein) nuclear statistics; (2) the wide (highly anharmonic) amplitudes of the He-dopant and He-He motions; and (3) both the weakly attractive (long-range) and the strongly repulsive (short-range) interaction between the helium atoms. Special emphasis is placed on the dependence of the cluster properties on the number of helium atoms, and on the comparison between the two helium isotopes. In particular, we analyze the analogies between quantum rings comprising electrons and (3)He atoms. The synthetic vibro-rotational Raman spectra of Cl2(X) immersed in ((3,4)He)N clusters (N≤ 4) are discussed as a function of the cluster size and the nuclear statistics. It is shown that the Coriolis couplings play a key role in modifying the spectral dopant profile in (3)He. Finally, we point out possible directions for future research using the quantum-chemistry ansatz.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral simulations of polar diatomic molecules immersed in He clusters: application to the ICl (X) molecule

A recently developed quantum-chemistry-like methodology to study molecules solvated in atomic clusters is applied to the ICl (iodine chloride) polar diatomic molecule immersed in clusters of He atoms. The atoms of the solvent clusters are treated as the ‘electrons’ and the solvated molecule as a structured ‘nucleus’ of the combined solvent-solute system. The helium–helium and helium-dopant inte...

متن کامل

Quantum-Chemical and Solvatochromic analysis of solvent effects on the Electronic Absorption Spectra of Some Benzodiazepine Derivatives

ABSTRACT The solvatochromic behaviour of two ketonic derivatives of benzodiazepine namely 7-chloro-1-methyl-5-phenyl-1,5-benzodiazepine-2,4-dione (Clobazam®) and 5,(2-chlorophenyl)-7-nitro-2,3-dihydro-1,4-benzodiazepine-2-one (Clonazepam®) were analysed in some selected solvents of different polarities using UV-Visible spectroscopy and DFT computational techniques. The solute-solvent interacti...

متن کامل

Exact, Born-Oppenheimer, and quantum-chemistry-like calculations in helium clusters doped with light molecules: The He2N2(X) system.

Helium clusters doped with diatomic molecules, He(N)-BC, have been recently studied by means of a quantum-chemistry-like approach. The model treats He atoms as "electrons" and dopants as "nuclei" in standard electronic structure calculations. Due to the large mass difference between He atoms and electrons, and to the replacement of Coulomb interactions by intermolecular potentials, it is worth ...

متن کامل

Quantum Simulation of Mg + He n and Ar + He n Clusters

We present accurate quantum Monte Carlo calculations of the stability and structure of MgHen and Ar Hen clusters using accurate many-body potential surfaces derived from high level ab initio calculations and including spin-orbit effects in the case of Ar. The highly quantum nature of the nuclear motion in these systems leads to significant delocalisation such that no sharp shell closure is foun...

متن کامل

Structure and Spectroscopy of Doped Helium Clusters Using Quantum Monte Carlo Techniques

We present a comparative study of the rotational characteristics of various molecule-doped He clusters using quantum Monte Carlo techniques. The theoretical conclusions obtained from both zero and finite temperature Monte Carlo studies confirm the presence of two different dynamical regimes that correlate with the magnitude of the rotational constant of the molecule, i.e., fast or slow rotors. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 25  شماره 

صفحات  -

تاریخ انتشار 2013